Aerosol Chemical Characterization on Board the DOE G1 Using the PILS-IC Technique During TEXAQS 2000 Y.-N. Lee, Z. Song, Y. Liu, S. Springston, L. Nunnermacker, P. Daum **Brookhaven National Laboratory** R. Weber, D. Orsini Georgia Institute of Technology N. Laulainen, J. Hubbe, V. Morris Pacific Northwest National Laboratory ### Why Determine Aerosol Chemical Composition? - Sources and precursors - Formation mechanisms - Chemical evolution - CCN properties - Optical effects - Health effects #### Principle of the PILS Technique - Aerosol particles are grown to super micron size under supersaturation conditions created by mixing sample air with steam; particles of 100 nm diameter are activated with a >90% efficiency. - The resulting super micron size liquid droplets are collected by a single orifice jet impactor; $D_p(50)$ is ~1 μm . ### Principle of the PILS Technique (continued) - Liquid sample collected at the impactor surface is transported to the IC's with a constant carrier flow (ca. 0.2 mL min⁻¹) - Samples are injected for analysis every 3 minutes, which is the time required to elute the major ions. - Sample integration time is governed by the carrier flow rate and the sample loop size and was 120 s during TexAqs 2000. ### IC Analysis - Cations, Na⁺, NH₄⁺, K⁺, and Ca²⁺, and anions, Cl⁻, NO₃⁻, and SO₄²⁻ were determined. - The limit of detection, based on the IC analysis (ca. $0.1 \,\mu\text{M}$) and a sample air flow rate of $5.0 \,\text{L}$ min⁻¹, is $\sim 0.1 \,\mu\text{g}$ m⁻³ for these ions. #### Inlet Arrangement - Isokinetic sampling at a 30 L min⁻¹ flow rate. - A 2.5 μm size cut achieved by a MOUDI impactor. - SO₂, HNO₃, and NH₃ removed using two glass annular denuders in series. ### Schematic Diagram of the G1 PILS System ### The PILS-IC Deployed on the DOE G1 during TexAqs 2000 # Frequency distributions of aerosol ionic concentrations G1, TexAqs 2000 # Distribution of aerosol ion mass concentrations G1, TexAqs 2000 # Ratios of [NH₄] to 2x[SO₄]+[NO₃] as a function of SO₄ mass concentration in 4 quartiles ### Other aerosol measurements on board the G1 | Passive Cavity Aerosol
Spectrometer Probe (pcasp) | Number distribution in 15 bins between 0.1 µm and 3.0 µm | |--|--| | Particle Soot Absorption Photometer (PSAP) | Absorption coefficient at 565 nm due to black carbon | | Forward Scattering Spectrometer Probe (FSSP) | Number distribution in 15 bins between 2 µm and 47 µm | | Twin Scanning Electrical Mobility Sizer (TSEMS) | Number distribution in the range from 3 nm to 700 nm | ### Additional characterization of aerosols | Pcasp data | Integrated particle surface and <i>volume</i> concentrations Estimate of <i>total mass</i> of the accumulation mode particles with assumed densities (e.g., 1.7 g cm⁻³ for (HN₄)₂SO₄, and 1 g cm⁻³ for organics) | |------------------------|--| | PSAP data | S Estimate of <i>black carbon mass</i> concentration with an assumed σ value of 10 m ² g ⁻¹ . | | Surrogate organic mass | | #### Aerosol Organic Component Determination - Typically by filter collection followed by EC/OC determination based on the thermal optical reflectance technique - Low time resolution (1 hr or longer) - Positive interference by gaseous organic compounds - Negative interference due to evaporative loss on filter medium - EC/OC subject to operational definition arising from, e.g., charring of OC - Uncertainty in the conversion factor from carbon to compound - Large measurement uncertainties associated with the OC determination ## Questions on aerosol mass, chemical composition, and formation mechanisms - How much does the inorganic ion mass account for total aerosol mass? - How much the black carbon and organic compounds contribute to total aerosol mass? - What relationships can be discerned among these components, and what are their sources? - *Is there a size dependence of these components?* - Are there photochemical signals in these components? ## Comparison of total aerosol ion mass and particle volume 9/11/00 ## Comparison of total aerosol ion mass and particle volume 9/12/00 ## Comparison of total ion concentration and total particle volume 9/6/00 m g u ### Contribution of ionic components to total aerosol mass ### Relationships Among Aerosol Components ### Aerosol Chemical Composition Observed on 9/6/00 ### Comparison of aerosol chemical composition ### Size Dependence of Aerosol Chemical Composition ### Aerosol mass loading as a function of photochemical age ## Relationships between aerosol mass and photochemical products morning flight, 8/26/00 ## Relationships between aerosol mass and photochemical products afternoon flight, 8/26/00 ## Relationships between aerosol mass and photochemical products afternoon flight, 9/6/00 ### Relationships between aerosol mass and photochemical products morning flight, 9/7/00 ## Dependence of aerosol mass on NO_z morning flight, 9/11/00 ## Dependence of aerosol mass on NO_z morning flight, 9/12/00 #### Conclusions - ¥ Inorganic ions, black carbon, and surrogate organics of fine aerosol particles were determined on board the DOE G1during TexAqs 2000. - \forall NH₄⁺ and SO₄²⁻ were the dominant ionic species; NO₃⁻ was typically small, < 0.5 mg m⁻³, with infrequent excursions reaching half as SO₄²⁻. - The $[NH_4^+]$ to $[NO_3^-]+2[SO_4^{2-}]$ molar ratio often exceeded unity, suggesting the presence of other ionic species such as organic acids, and that NH_3 was in abundant supply. - \forall An organic aerosol event showed a mass maximum at ~0.4 m, contrasting that at ~0.2 m observed during a sulfate aerosol event. - * The aerosol organic component correlated well with black carbon, and contributed nearly equally to aerosol mass as the inorganic ions. - ¥ Fine aerosol mass, both the inorganic and organic fractions, showed a positive correlation with H₂CO and NO_z, suggesting a photochemical source of aerosol precursors.